GSK-3α is a central regulator of age-related pathologies in mice.

نویسندگان

  • Jibin Zhou
  • Theresa A Freeman
  • Firdos Ahmad
  • Xiying Shang
  • Emily Mangano
  • Erhe Gao
  • John Farber
  • Yajing Wang
  • Xin-Liang Ma
  • James Woodgett
  • Ronald J Vagnozzi
  • Hind Lal
  • Thomas Force
چکیده

Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation.

Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is mi...

متن کامل

Multifaceted Roles of GSK-3 in Cancer and Autophagy-Related Diseases

GSK-3 is a ubiquitously expressed serine/threonine kinase existing as GSK-3α and GSK-3β isoforms, both active under basal conditions and inactivated upon phosphorylation by different upstream kinases. Initially discovered as a regulator of glycogen synthesis, GSK-3 is also involved in several signaling pathways controlling many different key functions. Here, we discuss recent advances regarding...

متن کامل

Tissue-Specific Analysis of Glycogen Synthase Kinase-3α (GSK-3α) in Glucose Metabolism: Effect of Strain Variation

BACKGROUND Over-activity and elevated expression of glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology of insulin resistance and Type 2 diabetes. Administration of specific GSK-3 inhibitors to diabetic or obese rodent models improves glycaemic control and insulin sensitivity. However, due to the indiscriminatory nature of these inhibitors, the relative contribution of the tw...

متن کامل

Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways

Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-3α and Gsk-3β, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic deletion of both Gsk-3α and Gsk-3β in mouse embryonic stem cells (ESCs) has previously been shown to lead to the constitutive ac...

متن کامل

Novel Reporter Alleles of GSK-3α and GSK-3β

Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3β and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3β mouse alleles that allow us to visualise expression of their respective mRNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 123 4  شماره 

صفحات  -

تاریخ انتشار 2013